

Reg.	No.	:	***************************************	
Name	:		***************************************	

Fifth Semester B.Tech. Degree Examination, November 2014 (2008 Scheme)

08.502 : ADVANCED MATHEMATICS AND QUEUING MODELS (RF)

Time: 3 Hours Max. Marks: 100

Instruction: Answer all questions of Part A and one full question each from Module I, Module II and Module III of Part B.

PART-A

- 1. Find all basic solutions of the following system $2x_1 + x_2 + 4x_3 = 11$ and $3x_1 + x_2 + 5x_3 = 14$
- 2. Define slack and surplus variables. Give example.
- 3. What are the basic steps in PERT/CPM techniques?
- 4. Tasks A, B, C, ..., H, I constitute a project. The notation X<Y means that the task X must be finished before Y can begin with this notation, construct the network diagram having the following constraints,

 A < D, A < E, B < F, D < F, C < G, C < H, F < I, G < I.
- Find the LU decomposition of the matrix.

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 3 & -4 & -2 \\ 2 & -3 & -2 \end{bmatrix}$$

- 6. Let $H = \{ (a 3b, b a, a) / a, b \in \mathbb{R} \}$. Show that H is a subspace of \mathbb{R}^3
- 7. Find a unit vector orthogonal to (1,1,1) and (1,2,-3) in \mathbb{R}^3 .
- 8. What is queue discipline and give three different possible queue disciplines?
- 9. If λ and μ are, respectively, the arrival and service rates of an (M | M | 1) : $(\infty | \text{FIFO})$ queueing model, show that the average number of customers in the system $\text{Ls} = \frac{\rho}{1-\rho}$ where $\rho = \frac{\lambda}{\mu}$.
- 10. In an (M | M | C) : (∞ | FIFO) queueing model if λ = 15/ hour, μ =6/ hour and c = 3 find P₀. (10×4=40 Marks)

PART-B

Module - I

Answer one full question.

11. a) Use simplex method to solve the following LPP.

$$Maximize z = x_1 - x_2 + 3x_3$$

Subject to the constraints

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 + 0x_2 - x_3 \le 2$$

$$2x_1 - 2x_2 + 3x_3 \le 0$$
 and

$$x_1, x_2, x_3 \ge 0.$$

10

b) The utility data for a network is given below. Determine the total float, free float and independent float of the network.

10

12. a) Solve by simplex method

Maximize
$$z = 30 x_1 + 40 x_2$$

Subject to
$$60 x_1 + 120 x_2 \le 12,000$$

$$8 x_1 + 5 x_2 \le 600$$

$$3 x_1 + 4 x_2 \le 500$$

$$x_1, x_2 \ge 0$$

10

b) The following table gives the data for the activities of a small project.

Job :	1-2	1-3	2 – 4	2 - 6	3 – 4	3 – 5	4 - 5	5 - 6	3 3 3
to:				1					12/ 0
tm:	4	10	3	4	15	4	5	5	WEMORIU.
tp:	7	17	3	7	26	8	5	8	* JOHN COST

- i) Draw the network and find the expected project completion time.
- ii) What is the probability that it would take 5 days more than the expected duration?

Module - II

13. a) Solve the equation AX = B if A = LU =
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$
 and
$$B^{T} = (-7, 5, 2)$$

b) Find the spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$
 10

- 14. a) Find the rank and basis of the row-space of the matrix $\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 6 & -3 & -3 \\ 3 & 10 & -6 & -5 \end{bmatrix}$
 - b) Find the projection of u = (1, -2, 3, -4) along v = (1, 2, 1, 2) in \mathbb{R}^4 .
 - c) Show that the quadratic form $x^2 + 2y^2 + 3z^2 + 2xy + 2yz 2xz$ is indefinite. 6

Module - III

- 15. a) Customers arrive at a one man barber shop according to poisson process with a mean arrival time of 20 minutes. Customester spend an average of 15 minutes in the barber's chair.
 - i) What is the expected number of customers in the barber shop in the queue?
 - ii) How much time can a customer expected to spend in the barber shop?
 - iii) What is probability that the waiting time in the system is more than 10 minutes?
 - iv) What is the probability that there are more than 3 customers in the system?
 - A bank with a single server, there are 2 chairs for waiting customers.
 On an average one customer arrives every 10 minutes and each customer takes 5 minutes for getting served. Making suitable assumptions, find
 - i) Probability that an arrival will get a chair to sit on
 - ii) The probability that an arrival will have to stand
 - iii) Expected waiting time of a customer.

10

10

- 16. a) Patients arrive at a clinic according to Poisson distribution at a rate of 30 patients per hour. The waiting room does not accommodate more than 14 patients. Examination time per patient is exponential with mean rate of 20 per hour.
 - a) What is the probability that an arriving patient will not wait?
 - b) What is the expected waiting time until a patient is discharged from the clinic ?
 - b) A telephone exchange has 2 long distance operators. The telephone company finds that during the peak load, long distance call arrive in a poisson fashion at an average rate of 15 per hour. The length of service on these calls is approximately exponential with mean length of 5 minutes.
 - i) What is the probability that a customer will have to wait for his long distance call during the peak hours of the day?
 - ii) If the customer will wait and are serviced in turn, what is the expected waiting time?

10

10